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ABSTRACT

The p norm and the k. operator-norm of an m X n complexP p

matrix A = (ij) are given by

Alp = 1/p

JP = 2 ]lt I

and

kA,= I11ax{xI :x C', ix IL
pAX p

respectively. The main purpose of this paper is to investigate

the multipicativity of the 2 norms and their relation to theP

i operator-norms.p
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, 1 .1

1. Introduction and Statement of Main Results.

For 1 5 p , the £p norm of an m X n matrix A ( ) E CXn

is defined as

m n p'l/p(1) fA!p = (N fl 1/p
i1 j-II o ij

where for the case p = DD (which need riot he treated separately) we have,

of course,

IAI = lim {AIp = max {aij i.po l,J

That is, jp on C is simply the ordinary k norm on Crn

p ^inxn pm
These I norms must be distinguished from the 2p operator-norms

2n~ C mxn'

(1.2) IIAHlp = max{jAxp : x E Cn ,  p = 1.
pp px

Ostrowski [4], investigated some sub-multiplicativity properties

of the k norms in (1.1), including the following:

THEOREM 1.1 [4, Theorem 7.] If 1 p ! 2 and if A,B are

rectangular matrices so that the product Al exists, then

JABIp 5 JAI pIBIp

l.'~~~~~~~~ .... .. .. ,,p,. .. ,,l . ..lI ....... ... ... ..... . ... ... , ...... , ll



1.2

THEOREM 1.2 [4, Theorem 8.) If p,q satisf_ 1 5 p 2 q,

_ + 1 = 1, and if A, B are rectangular matrices su that AB exists,
p q

then

]ABI q JAI q B]p)

JAB q ! JAIp B q.

The results in Theorem 1.2 are analogous to Il6der's Inequality.

While Ostrowski proved that for I ! (I < 2 < p the inequalities

in Theorems 1.1 and 1.2 may fail to hold, we are able to generalize his

results as follows:

THEOREM 1.3. If I <_- q !5 2 ! p, + 1 , aid if A E C

B E C kxn , then

jAB 5 kl-2/PJA pBp
p p p

THEOREM 1.4. If 1 ! q - 2 < p, + 1, and A E C

p q -x

B E Ckxn' then

<AB n -2/q JAI JIl ,ABq = q

<AI m 1-2/q JAI BAq =qIBP,

A unified proof for Theorems 1.1-1.4 is given in Section 2.

Note that if A = a = (il,. ..,O) is a row vector and

B = b*= (1,... is a column vector (* denoting the adjoint), then

AB is the usual inner product (a,b) on ck; hence Theorems 1.1 and 1.3

give in this case the two inequalities



1.3

(a,b)I !5 jaipIbI I p - 2,

I(a,b) !- kl-2/Pjal p lbIp p > 2;

and Theorems 1.2 and 1.4 yield the Holder Inequality

k k 1/p k 1/q
(1.3) j(a,b)j = I a A (I ai lp ) ( I pi I = jai Ibiq1i=1 ili=l P

p 1 1+
p q

A norm N on C is commonly called (sub-) multiplicative if

in addition to the ordinary norm properties

N(A) > 0, A 0,

N(XA) X )XJN(A), X E C,

N(A+B) !5 N(A) + N(B),

we also have,

N(AB) ! N(A)N(B)

for all A,BE Cnxn .

Obviously, if N is a norm on CnX n and p > 0 is a fixed

constant, then pN is a norm on C too. This new norm may or may

not be multiplicative. If it is, we call p a multiplicativy_factor

for N. That is, p is a multiplicativity factor for N if and only if

N(AB) pN(A)N(B), # A, B E Cnxn.

If po0 is a multiplicativity factor for N then clearly, so is

any V with p - pO" In fact we proved more:



1.4

THEOREM 1.5 11, Theorem 4.]

(i) If N is a norm on Cnx n  then N has multiplicativity

factors.*",

(ii) A constant p > 0 is a multipli-ativity- factor for N

if and only if

SN -max{N(AB) : N(A) = N(B) = 1}.

Thus, p N is the optimal (smallest) multiplicativity factor for N if

and only if

N(AB) PNN(A)N(B) A,B 4 C

with equality for some nonzero matrices A = A0 , B = B0.

We observe now that matrices A, B whose upper left entry is I and

all other entries vanish, yield equality in Theorems 1.1 and 1.2. Similarly,

matrices A, B all whose entries are I, give equality in Theorems 1.3 and

1.4. Hence, Theorems 1.1-1.5 immediately provide the following result for our

p norms on square matrices:
pf

COROLLARY ].I. The optimal multiplicativitL factor p - p
p <

for the norm on C satisfiesp ~nxn

I , ,<p<2

(1.4) p P (n) nl_2/p, p 2.

If we define now the multiplicative norm

(1.5) N(A) F p. AIp, A E C
p p' '-nxn'

* This is not always the case for norms on infinite dimensional algebras;
see Section 2 of (21.



1.5

then Theorems 1.1-1.4 for square matrices, together with Corollary 1.1, can

be restated as,

COROLLARY 1.2. For all A,B E C and all p,q with

p- 1, 1 + 1 1, we have
p q

Mp (AB) 5 M p (A)M (B),

M (AB) !S M (A)M (B),
p p q

M (AB) 5 M (A) I (B),

p q p

wherei n general, these inequalities arehest possible.

The following relations between the i norms in (1.1) and the
p

9 operator-norms in (1.2) are special cases of Theorems 1.1-1.4, as
p

will follow from Theorem 2.1 in the next section:

TlHEOREM 1.6. 1t A L z nal p an1, 4 1, I

}Al, . (n)IAl

11 All - P q(m)IAj q.

We remark that if 1 p 5 2 then Theorem 1.6 implies

11 Allp - JI p

which is meaningful also for bounded linear operators on infinite k.P

spaces. If p > 2, we get

fIAlp < IAlq

which again may be meaningful in the infinite dimensional case.

i



1.6

The main tool in proving Theorem 1.1-1.4 in Section 2 is the following

lemma which seems to be of independent interest.

LEMIA 1.1 (Main Lemma.) For everv vector x E C' and

<p < (I ! I +1 + we. have
p ( -

(1.6) Ix I Ix < n /P-I/qljx

Our proofs in Section 2 also make use of the mixed 2 iiormsP ,

on C introduced by strowski 14) as

Ip "I ( - ,(1.7) tA ' ( .j~ i= > Y i

The main result concerning these mixed norms is given in Theorem 2.1. I
We emphasize that each one of the i nequalities established in this

paper becomes an equality, either when we deal with matrices (including

vectors) with a single entry I in the upper left hand coruer and all

other entries 0; or when we deal with matrices all of whose entries

are 1. Thus, none of our inequalities in this paper can be improved.



2.1

2. Further Results and Proofs.

Proof of the Main Lemma. The fact that Jxf is an increasingP

function of p, p > 1, is well known (e.g. [31); and this is the

statement of the left inequality in (1.b).

We write now 11l6der's Inequality in (1 .3) as

n l/s n1 i/tL~1  cy3 (i~ I  ) ( i [ i  , 1, - + L

Thus, for s = q/p, t q/(q-p) and any x = " ' n E Cn, we

have

n n n p/q n 1)-p/qIxlp : ip  = I t l ilP' p < I < I i q )  )
i=l i1l i=l i=l

= n p(l/p-l/q)lxlr,
q

and the right inequality in (1.6) follows.

Recall now the definition of the norm M (A) in (I.§5) for sqiare
P

matrices, in an analogous way, for rectangular matrices A E C We

define two different multiples of IAI as follows:

(2.1) M'n(A) = pp(m)IAIp p'

(2.2) N'(A) = p (n)IAI

p p

where p (n) is given in (1.4).

Clearly, for square matrices we have

M (A) = Mp(A) - Mp(A).
p p



2.2

On the other hand, viewing from now on a vector x E Cn  as an

n x I mat rix, our notation becomes

(2.3) M(W) pp (n) x •

hence we can reformulate our Main Lemma in the following compact way:

LEMMA 2.1. If p > I and I + 1 = I, then
p q

(2.4) ' Sm(X) x t n .

Proof. If p ! q, then (2.4) is the right inequality of (1.6).

If p : q, then q 5 2, so M'((x) = ix,,, and (2.4) becomes the left

inequality of (1.6).

Having the definitions in (2.1), (2.2), we prove next:

LEMMA 2.2. If A = (c..) E c and p 1, + , ten

p,q q

(2.6) IA! 1 M"(A).
p,q p

Pcoof. Denoting the columns of A by a],... an, Lemma 2.1 and

(2.3) yield

JAIp q =  I(la Ip,. ., an p)lq !5 I(M'(,(al),...,M'l(a n))

Apq I~~.. la j nl p qo q

= p q(m)(lall q,... I an q)fq =.q(m)IAIq =M(A),

and we have (2.5).

_____ ___ .
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2.3

For (2.6) we use again Lemma 2.1 and (2.3) to obtain

JA ( a , j < M'(Ja,jp,.... 'ja
pp,q p 1np)q p M nIp

= pp(n) (a,..., IanIp)Ip pp(n)1 Alp : M (A).

In 141 Ostrowski gives the following proof to the following lemma.

LEMWA 2.3 14, Section 35.1 For p > 1,I + = , and matrices
p q

A, B for which AB exists, we have

(2.7) lAB p I A= IBI 'hp,

(2.8) AB I B! ATi
p p q,P,

where T denotes the tra!ispose.

Proof. Let A E C B E Ckx, aIid s't
-nxk' kn

k
Yij = y i0.j"

Then by Hlder's Inequality we have,

k k k p/q
I ' jI p  -< a£ ~j 1 1 (Y3 Ip  10( 1.

2=1 k=1 i =1

So

m n n k p/q

ABIP I I J¥jIP < 1AIP 2 ( 2 ljI q) = IAlPIBI P

p i=l j=l j k = p q,p'

and (2.7) is established.

For (2.8) we exchange the roles of p and q to obtain

-- aw



2.4

k k p/qI YijP p =a I IP (2= U ~ 'q

hence

m k T/qP
ABIp P B I ( =1 108 ) AT

p ) q,p'

and the lemma follows.

With the help of Lemmas 2.2 and 2.3 we can now prove the main

result of this section:

THEOREM 2.1. If p ? 1, 1 + I 1, and if A, B are rectangular
p q

matrices so that AB exists, then

(2.9) M'(AB) - N' (A)h'p(B),

(2.10) M,'(AB) M"(A)M"(I)
p p j)

(2.11) M' (AR) <N'(ri()
p p q

(2.12) M"(AB) M' (A)Mp(B),
p q p

where N' and M" are defined in (2.1), (2.2).

Proof. Let A E C and B E C Then, by (2.7) and (2.5)~Xk ~ kxn

we have

IABIp 5AIpB q,p 5 A A p'(B),

and multiplying both sides by p(m) yields (2.9).

I



2.5

Since M'(AT) = mj(A) then by (2.8) and (2.5),p

JAB', 5 IB AB . ' (A ) -z B1 p M"(A),p q,P P P

so multiplying by p pn) gives (2.10).

Next, we use (2.7) and (2.6) to obtain

-ABI S A [BI  < AjM"(B)ABp P q,P q

and multiplying by p (m) gives (2.11).

q

Finally, by (2.8) and (2.6),

'F,JABI B < Bip I.(AT) M' (A) BI,
p p) q,p 1) q 1)

so multiplying by p (n) yields (2.12).

p

We observe now that Theorems 1 . 1-1 . are mere Iy res La Lemen t s of

(2.9)-(2.12).

Proof of Theorem 1.6. If A E C nx and x . ~ , we think as

before of x as an n x I matrix; hence,

Axfp = p(Ax), Mp(x) = lxiP.

So by (2.10),

IIAllp = max AXIp = max W"(Ax) -M"(A) max M"(x)
1Xlp=1 p= xlp=l p

= M"(A) = p(n)Alp
P p p

and we get the first part of the theorem.

tm
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Similarly, if A and x are as above, then by (2.12),

A = =ax I Ax max M"(Ax) ', (A) max M"(x)
Ip ip lp

='(A) p,(m)iA,

and the proof is complete.

Inequalities for products of more than two matrices whih are

treated by Ostrowski in 141, can be extended in a manner entirely

analogous to our results in this paper.

REFERENCES

1. M. Goldberg and E.G. Straus, Norm properties of C-numerical radii,
Linear Algebra Appi. 24 (1979), 113-131.

2. N. Goldberg and E.G. Straus, Operator norms, multiplicativity factors,
and C-numerical radii, Linear Algebra App. 43 (1982), 137-159.

3. G.l. Hardy, J.E. Littlewood, and G. P6Iya, Inequalities, Cambridge,
1959.

4. A. Ostrowski, Uber Normen von Matrizen, Nath._ Z. 63 (1955), 2-18.

I .



UNCLACVSIFIED .I

SECURITY CLAWSFICATION &% THIS PAGE (WhenOt Does Ent red)

REDINTUCINREPORT DOCUMENTA.TION PAGE BEFORE COPEIGFORM
1.RPR NUMBER 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

AI OS -TR 82 -0 9 26 ___ ___ __1-_

4. TI TL E (and Subtit) S. TYPE OF REPORT A PERIOD COVERED

MULTIPLICATIVITY OF I p NORMS FOR MATRICES TEUCHNICAL
S. PERFORMING 010. REPORT NUMBER

7. AUTHOR(.) 6. CONTRACT OR GRANT NUMBER(e)

Moshe Goldberg and E.G. StrausAFR7-02

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

University of California 2304/A3
Algebra Institute 612
q-r TkrAm rA 91A 612

IL. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research (NM) Sept NUME 9FPGE

Bolling Air Force Base, D.C. 20332 14
14. MONITORING AGENCY NAME 6 AOORESS(11 dioet tram Controillns Office) IS. SECURITY CLASS. (of Chia report)

UNCLASSIFIED

IS&. OECLASSiFiCATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DIST 0IUUT ION ST ATEM ENT (of the sibetact entered in Stock 20. It differet Itom, Report)

IS- SUPPLEMENTARY MOTES

IS. KEY WORDS (Contlnua on ratoe. aid. Of nacear And identify by block number)

Matrix norms, sub-multiplicativity

20. Ass 1~C? (Continue an rover**s ide it necesaryvand identify by block number)

The main purpose of this paper is to investigate the sub-multiplicativity

of the (LZ norms for matrices

DD , Fjn"T 1473 EDITION OF I NOV 45 IS OSSOL9E 82CASIID 8 0
SECURITY CLASSIFICATION OF THIS PAGE (Whin Date EN.P.

IIII 11


